Adaptive cueing strategy for gait modification: A case study using auditory cues

Author:

Wu Tina L. Y.,Murphy Anna,Chen Chao,Kulić Dana

Abstract

People with Parkinson's (PwP) experience gait impairments that can be improved through cue training, where visual, auditory, or haptic cues are provided to guide the walker's cadence or step length. There are two types of cueing strategies: open and closed-loop. Closed-loop cueing may be more effective in addressing habituation and cue dependency, but has to date been rarely validated with PwP. In this study, we adapt a human-in-the-loop framework to conduct preliminary analysis with four PwP. The closed-loop framework learns an individualized model of the walker's responsiveness to cues and generates an optimized cue based on the model. In this feasibility study, we determine whether participants in early stages of Parkinson's can respond to the novel cueing framework, and compare the performance of the framework to two alternative cueing strategies (fixed/proportional approaches) in changing the participant's cadence to two target cadences (speed up/slow down). The preliminary results show that the selection of the target cadence has an impact on the participant's gait performance. With the appropriate target, the framework and the fixed approaches perform similarly in slowing the participants' cadence. However, the proposed framework demonstrates better efficiency, explainability, and robustness across participants. Participants also have the highest retention rate in the absence of cues with the proposed framework. Finally, there is no clear benefit of using the proportional approach.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive auditory assistance for stride length cadence modification in older adults and people with Parkinson’s;Frontiers in Physiology;2024-02-07

2. Auditory cueing strategy for stride length and cadence modification: a feasibility study with healthy adults;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3