DRFnet: Dynamic receptive field network for object detection and image recognition

Author:

Tan Minjie,Yuan Xinyang,Liang Binbin,Han Songchen

Abstract

Biological experiments discovered that the receptive field of neurons in the primary visual cortex of an animal's visual system is dynamic and capable of being altered by the sensory context. However, in a typical convolution neural network (CNN), a unit's response only comes from a fixed receptive field, which is generally determined by the preset kernel size in each layer. In this work, we simulate the dynamic receptive field mechanism in the biological visual system (BVS) for application in object detection and image recognition. We proposed a Dynamic Receptive Field module (DRF), which can realize the global information-guided responses under the premise of a slight increase in parameters and computational cost. Specifically, we design a transformer-style DRF module, which defines the correlation coefficient between two feature points by their relative distance. For an input feature map, we first divide the relative distance corresponding to different receptive field regions between the target feature point and its surrounding feature points into N different discrete levels. Then, a vector containing N different weights is automatically learned from the dataset and assigned to each feature point, according to the calculated discrete level that this feature point belongs. In this way, we achieve a correlation matrix primarily measuring the relationship between the target feature point and its surrounding feature points. The DRF-processed responses of each feature point are computed by multiplying its corresponding correlation matrix with the input feature map, which computationally equals to accomplish a weighted sum of all feature points exploiting the global and long-range information as the weight. Finally, by superimposing the local responses calculated by a traditional convolution layer with DRF responses, our proposed approach can integrate the rich context information among neighbors and the long-range dependencies of background into the feature maps. With the proposed DRF module, we achieved significant performance improvement on four benchmark datasets for both tasks of object detection and image recognition. Furthermore, we also proposed a new matching strategy that can improve the detection results of small targets compared with the traditional IOU-max matching strategy.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3