Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control

Author:

Veselic Sebastijan,Zito Claudio,Farina Dario

Abstract

Physical human-robot interaction (pHRI) enables a user to interact with a physical robotic device to advance beyond the current capabilities of high-payload and high-precision industrial robots. This paradigm opens up novel applications where a the cognitive capability of a user is combined with the precision and strength of robots. Yet, current pHRI interfaces suffer from low take-up and a high cognitive burden for the user. We propose a novel framework that robustly and efficiently assists users by reacting proactively to their commands. The key insight is to include context- and user-awareness in the controller, improving decision-making on how to assist the user. Context-awareness is achieved by inferring the candidate objects to be grasped in a task or scene and automatically computing plans for reaching them. User-awareness is implemented by facilitating the motion toward the most likely object that the user wants to grasp, as well as dynamically recovering from incorrect predictions. Experimental results in a virtual environment of two degrees of freedom control show the capability of this approach to outperform manual control. By robustly predicting user intention, the proposed controller allows subjects to achieve superhuman performance in terms of accuracy and, thereby, usability.

Funder

H2020 European Research Council

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Logistics 5.0 vs. Logistics 4.0;Information Logistics for Organizational Empowerment and Effective Supply Chain Management;2023-12-05

2. Motor Characteristics of Human Adaptations to External Assistive Forces;Journal of Robotics and Mechatronics;2023-06-20

3. Towards Living Machines: current and future trends of tactile sensing, grasping, and social robotics;Bioinspiration & Biomimetics;2023-02-23

4. Human-robot interactions in manufacturing: A survey of human behavior modeling;Robotics and Computer-Integrated Manufacturing;2022-12

5. An online human–robot collaborative grinding state recognition approach based on contact dynamics and LSTM;Frontiers in Neurorobotics;2022-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3