Multi-exposure electric power monitoring image fusion method without ghosting based on exposure fusion framework and color dissimilarity feature

Author:

Chen Sichao,Li Zhenfei,Shen Dilong,An Yunzhu,Yang Jian,Lv Bin,Zhou Guohua

Abstract

To solve the ghosting artifacts problem in dynamic scene multi-scale exposure fusion, an improved multi-exposure fusion method has been proposed without ghosting based on the exposure fusion framework and the color dissimilarity feature of this study. This fusion method can be further applied to power system monitoring and unmanned aerial vehicle monitoring. In this study, first, an improved exposure fusion framework based on the camera response model was applied to preprocess the input image sequence. Second, the initial weight map was estimated by multiplying four weight items. In removing the ghosting weight term, an improved color dissimilarity feature was used to detect the object motion features in dynamic scenes. Finally, the improved pyramid model as adopted to retain detailed information about the poor exposure areas. Experimental results indicated that the proposed method improves the performance of images in terms of sharpness, detail processing, and ghosting artifacts removal and is superior to the five existing multi-exposure image fusion (MEF) methods in quality evaluation.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference43 articles.

1. The effect of Jpeg compression in close range photogrammetry;Akçay;Int. J. Eng. Geosci,2017

2. Single-scale fusion: an effective approach to merging images;Ancuti;IEEE Trans. Image Process,2016

3. Rendering high dynamic range radiance maps from photographs,;Debevec,2008

4. 2019

5. Perceptual evaluation for multi-exposure image fusion of dynamic scenes;Fang;IEEE Trans. Image Process,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3