A Manufacturing-Oriented Intelligent Vision System Based on Deep Neural Network for Object Recognition and 6D Pose Estimation

Author:

Liang Guoyuan,Chen Fan,Liang Yu,Feng Yachun,Wang Can,Wu Xinyu

Abstract

Nowadays, intelligent robots are widely applied in the manufacturing industry, in various working places or assembly lines. In most manufacturing tasks, determining the category and pose of parts is important, yet challenging, due to complex environments. This paper presents a new two-stage intelligent vision system based on a deep neural network with RGB-D image inputs for object recognition and 6D pose estimation. A dense-connected network fusing multi-scale features is first built to segment the objects from the background. The 2D pixels and 3D points in cropped object regions are then fed into a pose estimation network to make object pose predictions based on fusion of color and geometry features. By introducing the channel and position attention modules, the pose estimation network presents an effective feature extraction method, by stressing important features whilst suppressing unnecessary ones. Comparative experiments with several state-of-the-art networks conducted on two well-known benchmark datasets, YCB-Video and LineMOD, verified the effectiveness and superior performance of the proposed method. Moreover, we built a vision-guided robotic grasping system based on the proposed method using a Kinova Jaco2 manipulator with an RGB-D camera installed. Grasping experiments proved that the robot system can effectively implement common operations such as picking up and moving objects, thereby demonstrating its potential to be applied in all kinds of real-time manufacturing applications.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference40 articles.

1. Segnet: a deep convolutional encoder-decoder architecture for scene segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell,2017

2. Learning 6D object pose estimation using 3D object coordinates;Brachmann,2014

3. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs;Chen;IEEE Trans. Pattern Anal. Mach. Intell

4. Rethinking atrous convolution for semantic image segmentation;Chen

5. The importance of skip connections in biomedical image segmentation;Drozdzal,2016

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3