Improved object detection method for unmanned driving based on Transformers

Author:

Zhao Huaqi,Peng Xiang,Wang Su,Li Jun-Bao,Pan Jeng-Shyang,Su Xiaoguang,Liu Xiaomin

Abstract

The object detection method serves as the core technology within the unmanned driving perception module, extensively employed for detecting vehicles, pedestrians, traffic signs, and various objects. However, existing object detection methods still encounter three challenges in intricate unmanned driving scenarios: unsatisfactory performance in multi-scale object detection, inadequate accuracy in detecting small objects, and occurrences of false positives and missed detections in densely occluded environments. Therefore, this study proposes an improved object detection method for unmanned driving, leveraging Transformer architecture to address these challenges. First, a multi-scale Transformer feature extraction method integrated with channel attention is used to enhance the network's capability in extracting features across different scales. Second, a training method incorporating Query Denoising with Gaussian decay was employed to enhance the network's proficiency in learning representations of small objects. Third, a hybrid matching method combining Optimal Transport and Hungarian algorithms was used to facilitate the matching process between predicted and actual values, thereby enriching the network with more informative positive sample features. Experimental evaluations conducted on datasets including KITTI demonstrate that the proposed method achieves 3% higher mean Average Precision (mAP) than that of the existing methodologies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Frontiers Media SA

Reference44 articles.

1. Toward transformer-based object detection;Beal;arXiv,2020

2. “End-to-end object detection with transformers,”;Carion,2020

3. Support-vector networks;Cortes;Mach. Learn,1995

4. “Histograms of oriented gradients for human detection,”;Dalal,2005

5. An image is worth 16x16 words: transformers for image recognition at scale;Dosovitskiy;arXiv,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of YOLOv8 in Target Detection of Autonomous Vehicles;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3