MLNet: a multi-level multimodal named entity recognition architecture

Author:

Zhai Hanming,Lv Xiaojun,Hou Zhiwen,Tong Xin,Bu Fanliang

Abstract

In the field of human–computer interaction, accurate identification of talking objects can help robots to accomplish subsequent tasks such as decision-making or recommendation; therefore, object determination is of great interest as a pre-requisite task. Whether it is named entity recognition (NER) in natural language processing (NLP) work or object detection (OD) task in the computer vision (CV) field, the essence is to achieve object recognition. Currently, multimodal approaches are widely used in basic image recognition and natural language processing tasks. This multimodal architecture can perform entity recognition tasks more accurately, but when faced with short texts and images containing more noise, we find that there is still room for optimization in the image-text-based multimodal named entity recognition (MNER) architecture. In this study, we propose a new multi-level multimodal named entity recognition architecture, which is a network capable of extracting useful visual information for boosting semantic understanding and subsequently improving entity identification efficacy. Specifically, we first performed image and text encoding separately and then built a symmetric neural network architecture based on Transformer for multimodal feature fusion. We utilized a gating mechanism to filter visual information that is significantly related to the textual content, in order to enhance text understanding and achieve semantic disambiguation. Furthermore, we incorporated character-level vector encoding to reduce text noise. Finally, we employed Conditional Random Fields for label classification task. Experiments on the Twitter dataset show that our model works to increase the accuracy of the MNER task.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3