Anomaly detection in images with shared autoencoders

Author:

Jia Haoyang,Liu Wenfen

Abstract

Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased toward one class (normal) due to the insufficient sample size of the other class (abnormal). We introduce a novel model that utilizes two decoders to share two encoders, respectively, forming two sets of network structures of encoder-decoder-encoder called EDE, which are used to map image distributions to predefined latent distributions and vice versa. In addition, we propose an innovative two-stage training mode. The first stage is roughly the same as the traditional autoencoder (AE) training, using the reconstruction loss of images and latent vectors for training. The second stage uses the idea of generative confrontation to send one of the two groups of reconstructed vectors into another EDE structure to generate fake images and latent vectors. This EDE structure needs to achieve two goals to distinguish the source of the data: the first is to maximize the difference between the fake image and the real image; the second is to maximize the difference between the fake latent vector and the reconstructed vector. Another EDE structure has the opposite goal. This network structure combined with special training methods not only well avoids the shortcomings of generative adversarial networks (GANs) and AEs, but also achieves state-of-the-art performance evaluated on several publicly available image datasets.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference33 articles.

1. Fraud detection system: A survey.;Abdallah;J. Netw. Comput. Appl.,2016

2. Automatic subspace clustering of high dimensional data for data mining applications;Agrawal;Proceedings of the 1998 ACM SIGMOD international conference on management of data,1998

3. Ganomaly: Semi-supervised anomaly detection via adversarial training,;Akcay;Computer vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science,2019

4. LOF: Identifying density-based local outliers;Breunig;Proceedings of the 2000 ACM SIGMOD international conference on Management of data,2000

5. Novelty detection via non-adversarial generative network.;Chen;arXiv,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3