A noise-suppressing neural network approach for upper limb human-machine interactive control based on sEMG signals

Author:

Zhang Bangcheng,Lan Xuteng,Wang Gang,Pang Zaixiang,Zhang Xiyu,Sun Zhongbo

Abstract

The use of upper limb rehabilitation robots to assist the affected limbs for active rehabilitation training is an inevitable trend in the field of rehabilitation medicine. In particular, the active motion intention-based control of the upper limb rehabilitation robots to assist subjects in rehabilitation training is a hot research topic in human-computer interaction control. Therefore, improving the accuracy of active motion intention recognition is the premise of the human-machine interaction controller design. Furthermore, there are external disturbances (bounded/unbounded disturbances) during rehabilitation training, which seriously threaten the safety of subjects. Thereby, eliminating external disturbances (especially unbounded disturbances) is the difficulty and key to the human-machine interaction control of the upper limb rehabilitation robots. In response to these problems, based on the surface electromyogram signal of the human upper limb, this paper proposes a fuzzy neural network active motion intention recognition method to explore the internal connection between the surface electromyogram signal of the human upper limb and active motion intention, and improve the real-time and accuracy of recognition. Based on this, two types of human-machine interaction controllers, which can be called as zeroing neural network controller and noise-suppressing zeroing neural network controller are designed to establish a safe and comfortable training environment to avoid secondary damage to the affected limb. Numerical experiments verify the feasibility and effectiveness of the proposed theories and methods.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3