Author:
Wang Jinqiang,Cao Dianguo,Li Yang,Wang Jiashuai,Wu Yuqiang
Abstract
The inability of new users to adapt quickly to the surface electromyography (sEMG) interface has greatly hindered the development of sEMG in the field of rehabilitation. This is due mainly to the large differences in sEMG signals produced by muscles when different people perform the same motion. To address this issue, a multi-user sEMG framework is proposed, using discriminative canonical correlation analysis and adaptive dimensionality reduction (ADR). The interface projects the feature sets for training users and new users into a low-dimensional uniform style space, overcoming the problem of individual differences in sEMG. The ADR method removes the redundant information in sEMG features and improves the accuracy of system motion recognition. The presented framework was validated on eight subjects with intact limbs, with an average recognition accuracy of 92.23% in 12 categories of upper-limb movements. In rehabilitation laboratory experiments, the average recognition rate reached 90.52%. The experimental results suggest that the framework offers a good solution to enable new rehabilitation users to adapt quickly to the sEMG interface.
Funder
National Natural Science Foundation of China
Major Scientific and Technological Innovation Project of Shandong Province
Subject
Artificial Intelligence,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献