Intelligent Badminton Training Robot in Athlete Injury Prevention Under Machine Learning

Author:

Xie Jun,Chen Guohua,Liu Shuang

Abstract

This study was developed to explore the role of the intelligent badminton training robot (IBTR) to prevent badminton player injuries based on the machine learning algorithm. An IBTR is designed from the perspectives of hardware and software systems, and the movements of the athletes are recognized and analyzed with the hidden Markov model (HMM) under the machine learning. After the design was completed, it was simulated with the computer to analyze its performance. The results show that after the HMM is optimized, the recognition accuracy or data pre-processing algorithm, based on the sliding window segmentation at the moment of hitting reaches 96.03%, and the recognition rate of the improved HMM to the robot can be 94.5%, showing a good recognition effect on the training set samples. In addition, the accuracy rate is basically stable when the total size of the training data is 120 sets, after the accuracy of the robot is analyzed through different data set sizes. Therefore, it was found that the designed IBTR has a high recognition rate and stable accuracy, which can provide experimental references for injury prevention in athlete training.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early steroid detection in athlete players using quantum photonics and machine learning model based analysis;Optical and Quantum Electronics;2024-01-31

2. Quantum computing in photonic integrated circuit smart data analysis using deep learning in healthcare and sports;Optical and Quantum Electronics;2024-01-30

3. Research on badminton path tracking algorithm based on machine vision;International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023);2023-12-07

4. YOLO-BTM: A Novel Shuttlecock Detection Method for Embedded Badminton Robots;2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE);2022-12-16

5. Design of Intelligent Evaluation System for Badminton Teaching;2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3