Exploring surface electromyography (EMG) as a feedback variable for the human-in-the-loop optimization of lower limb wearable robotics

Author:

Grimmer Martin,Zeiss Julian,Weigand Florian,Zhao Guoping

Abstract

Human-in-the-loop (HITL) optimization with metabolic cost feedback has been proposed to reduce walking effort with wearable robotics. This study investigates if lower limb surface electromyography (EMG) could be an alternative feedback variable to overcome time-intensive metabolic cost based exploration. For application, it should be possible to distinguish conditions with different walking efforts based on the EMG. To obtain such EMG data, a laboratory experiment was designed to elicit changes in the effort by loading and unloading pairs of weights (in total 2, 4, and 8 kg) in three randomized weight sessions for 13 subjects during treadmill walking. EMG of seven lower limb muscles was recorded for both limbs. Mean absolute values of each stride prior to and following weight loading and unloading were used to determine the detection rate (100% if every loading and unloading is detected accordingly) for changing between loaded and unloaded conditions. We assessed the use of multiple consecutive strides and the combination of muscles to improve the detection rate and estimated the related acquisition times of diminishing returns. To conclude on possible limitations of EMG for HITL optimization, EMG drift was evaluated during the Warmup and the experiment. Detection rates highly increased for the combination of multiple consecutive strides and the combination of multiple muscles. EMG drift was largest during Warmup and at the beginning of each weight session. The results suggest using EMG feedback of multiple involved muscles and from at least 10 consecutive strides (5.5 s) to benefit from the increases in detection rate in HITL optimization. In combination with up to 20 excluded acclimatization strides, after changing the assistance condition, we advise exploring about 16.5 s of walking to obtain reliable EMG-based feedback. To minimize the negative impact of EMG drift on the detection rate, at least 6 min of Warmup should be performed and breaks during the optimization should be avoided. Future studies should investigate additional feedback variables based on EMG, methods to reduce their variability and drift, and should apply the outcomes in HITL optimization with lower limb wearable robots.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference48 articles.

1. The effect of perspiration on the semg amplitude and power spectrum;Abdoli-Eramaki;J. Electromyogr. Kinesiol,2012

2. The energetic cost of maintaining lateral balance during human running;Arellano;J. Appl. Physiol,2012

3. Methods to reduce the variability of emg power spectrum estimates;Baratta;J. Electromyogr. Kinesiol,1998

4. Muscle fatigue evaluation with emg and acceleration data: a case study,;Barsotti;2020 42nd Annual International Conference of the IEEE Engineering in Medicine &Biology Society (EMBC),2020

5. The effects of adding mass to the legs on the energetics and biomechanics of walking;Browning;Med. Sci. Sports Exerc,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Walking on Virtual Surface Patterns Changes Muscular Activity;Synergetic Cooperation between Robots and Humans;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3