A robotic arm control system with simultaneous and sequential modes combining eye-tracking with steady-state visual evoked potential in virtual reality environment

Author:

Guo Rongxiao,Lin Yanfei,Luo Xi,Gao Xiaorong,Zhang Shangen

Abstract

At present, single-modal brain-computer interface (BCI) still has limitations in practical application, such as low flexibility, poor autonomy, and easy fatigue for subjects. This study developed an asynchronous robotic arm control system based on steady-state visual evoked potentials (SSVEP) and eye-tracking in virtual reality (VR) environment, including simultaneous and sequential modes. For simultaneous mode, target classification was realized by decision-level fusion of electroencephalography (EEG) and eye-gaze. The stimulus duration for each subject was non-fixed, which was determined by an adjustable window method. Subjects could autonomously control the start and stop of the system using triple blink and eye closure, respectively. For sequential mode, no calibration was conducted before operation. First, subjects’ gaze area was obtained through eye-gaze, and then only few stimulus blocks began to flicker. Next, target classification was determined using EEG. Additionally, subjects could reject false triggering commands using eye closure. In this study, the system effectiveness was verified through offline experiment and online robotic-arm grasping experiment. Twenty subjects participated in offline experiment. For simultaneous mode, average ACC and ITR at the stimulus duration of 0.9 s were 90.50% and 60.02 bits/min, respectively. For sequential mode, average ACC and ITR at the stimulus duration of 1.4 s were 90.47% and 45.38 bits/min, respectively. Fifteen subjects successfully completed the online tasks of grabbing balls in both modes, and most subjects preferred the sequential mode. The proposed hybrid brain-computer interface (h-BCI) system could increase autonomy, reduce visual fatigue, meet individual needs, and improve the efficiency of the system.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EEG-controlled tele-grasping for undefined objects;Frontiers in Neurorobotics;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3