A Novel Rain Removal Approach for Outdoor Dynamic Vision Sensor Event Videos

Author:

Cheng Long,Liu Ni,Guo Xusen,Shen Yuhao,Meng Zijun,Huang Kai,Zhang Xiaoqin

Abstract

As bio-inspired vision devices, dynamic vision sensors (DVS) are being applied in more and more applications. Unlike normal cameras, pixels in DVS independently respond to the luminance change with asynchronous output spikes. Therefore, removing raindrops and streaks from DVS event videos is a new but challenging task as the conventional deraining methods are no longer applicable. In this article, we propose to perform the deraining process in the width and time (W-T) space. This is motivated by the observation that rain steaks exhibits discontinuity in the width and time directions while background moving objects are usually piecewise smooth along with both directions. The W-T space can fuse the discontinuity in both directions and thus transforms raindrops and streaks to approximately uniform noise that are easy to remove. The non-local means filter is adopted as background object motion has periodic patterns in the W-T space. A repairing method is also designed to restore edge details erased during the deraining process. Experimental results demonstrate that our approach can better remove rain noise than the four existing methods for traditional camera videos. We also study how the event buffer depth and event frame time affect the performance investigate the potential implementation of our approach to classic RGB images. A new real-world database for DVS deraining is also created and shared for public use.

Funder

National Natural Science Foundation of China

National Social Science Fund of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference46 articles.

1. “A novel approach for rain removal from videos using low-rank recovery,”;Abdel-Hakim,2014

2. “Spatio-temporal frequency analysis for removing rain and snow from videos.”;Barnum,2007

3. Analysis of rain and snow in frequency space;Barnum;Int. J. Comput. Vis,2010

4. “Spike coding for dynamic vision sensors,”;Bi,2018

5. Non-local means denoising;Buades;Image Process. Online,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3