A review of rigid point cloud registration based on deep learning

Author:

Chen Lei,Feng Changzhou,Ma Yunpeng,Zhao Yikai,Wang Chaorong

Abstract

With the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration methods face challenges in noise, low overlap, uneven density, and large data scale, which limits the further application of point cloud registration in actual scenes. With the above deficiency, point cloud registration methods based on deep learning technology gradually emerged. This review summarizes the point cloud registration technology based on deep learning. Firstly, point cloud registration based on deep learning can be categorized into two types: complete overlap point cloud registration and partially overlapping point cloud registration. And the characteristics of the two kinds of methods are classified and summarized in detail. The characteristics of the partially overlapping point cloud registration method are introduced and compared with the completely overlapping method to provide further research insight. Secondly, the review delves into network performance improvement summarizes how to accelerate the point cloud registration method of deep learning from the hardware and software. Then, this review discusses point cloud registration applications in various domains. Finally, this review summarizes and outlooks the current challenges and future research directions of deep learning-based point cloud registration.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference142 articles.

1. “4-points congruent sets for robust pairwise surface registration,”;Aiger;ACM SIGGRAPH 2008,2008

2. “Rpsrnet: end-to-end trainable rigid point set registration network using barnes-hut 2d-tree representation,”;Ali;2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2021

3. “Pointnetlk: robust &efficient point cloud registration using pointnet,”;Aoki;2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2019

4. “POINTDSC: robust point cloud registration using deep spatial consistency,”;Bai;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3