Integrated Circuit Board Object Detection and Image Augmentation Fusion Model Based on YOLO

Author:

Lin Szu-Yin,Li Hao-Yu

Abstract

Industry 4.0 has been a hot topic in recent years. The process of integrating Cyber-Physical Systems (CPS), Artificial Intelligence (AI), and Internet of Things (IoT) technology, will become the trend in future construction of smart factories. In the past, smart factories were developed around the concept of the Flexible Manufacturing System (FMS). Most parts of the quality management process still needed to be implemented by Automated Optical Inspection (AOI) methods which required human resources and time to perform second stage testing. Screening standards also resulted in the elimination of about 30% of the products. In this study, we sort and analyze several Region-based Convolutional Neural Network (R-CNN) and YOLO models that are currently more advanced and widely used, analyze the methods and development problems of the various models, and propose a suitable real-time image recognition model and architecture suitable for Integrated Circuit Board (ICB) in manufacturing process. The goal of the first stage of this study is to collect and use different types of ICBs as model training data sets, and establish a preliminary image recognition model that can classify and predict different types of ICBs based on different feature points. The second stage explores image augmentation fusion and optimization methods. The data augmentation method used in this study can reach an average accuracy of 96.53%. In the final stage, there is discussion of the applicability of the model to detect and recognize the ICB directionality in <1 s with a 98% accuracy rate to meet the real-time requirements of smart manufacturing. Accurate and instant object image recognition in the smart manufacturing process can save manpower required for testing, improve equipment effectiveness, and increase both the production capacity and the yield rate of the production line. The proposed model improves the overall manufacturing process.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference26 articles.

1. Deep learning techniques—R-CNN to mask R-CNN: a survey,;Bharati,2020

2. Innovative quality management system for flexible manufacturing systems;Bihi,2018

3. YOLOv4: optimal speed and accuracy of object detection BochkovskiyA. WangC.-Y. LiaoH.-Y. M. arXiv [Preprint] arXiv:2004.10934.2020

4. Optical inspection software for a selected product on the smart factory production line,;Diering,2021

5. Faster R-CNN: an approach to real-time object detection,;Gavrilescu,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3