A multi-scale pooling convolutional neural network for accurate steel surface defects classification

Author:

Fu Guizhong,Zhang Zengguang,Le Wenwu,Li Jinbin,Zhu Qixin,Niu Fuzhou,Chen Hao,Sun Fangyuan,Shen Yehu

Abstract

Surface defect detection is an important technique to realize product quality inspection. In this study, we develop an innovative multi-scale pooling convolutional neural network to accomplish high-accuracy steel surface defect classification. The model was built based on SqueezeNet, and experiments were carried out on the NEU noise-free and noisy testing set. Class activation map visualization proves that the multi-scale pooling model can accurately capture the defect location at multiple scales, and the defect feature information at different scales can complement and reinforce each other to obtain more robust results. Through T-SNE visualization analysis, it is found that the classification results of this model have large inter-class distance and small intra-class distance, indicating that this model has high reliability and strong generalization ability. In addition, the model is small in size (3MB) and runs at up to 130FPS on an NVIDIA 1080Ti GPU, making it suitable for applications with high real-time requirements.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference39 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3