Coordinating With a Robot Partner Affects Neural Processing Related to Action Monitoring

Author:

Czeszumski Artur,Gert Anna L.,Keshava Ashima,Ghadirzadeh Ali,Kalthoff Tilman,Ehinger Benedikt V.,Tiessen Max,Björkman Mårten,Kragic Danica,König Peter

Abstract

Robots start to play a role in our social landscape, and they are progressively becoming responsive, both physically and socially. It begs the question of how humans react to and interact with robots in a coordinated manner and what the neural underpinnings of such behavior are. This exploratory study aims to understand the differences in human-human and human-robot interactions at a behavioral level and from a neurophysiological perspective. For this purpose, we adapted a collaborative dynamical paradigm from the literature. We asked 12 participants to hold two corners of a tablet while collaboratively guiding a ball around a circular track either with another participant or a robot. In irregular intervals, the ball was perturbed outward creating an artificial error in the behavior, which required corrective measures to return to the circular track again. Concurrently, we recorded electroencephalography (EEG). In the behavioral data, we found an increased velocity and positional error of the ball from the track in the human-human condition vs. human-robot condition. For the EEG data, we computed event-related potentials. We found a significant difference between human and robot partners driven by significant clusters at fronto-central electrodes. The amplitudes were stronger with a robot partner, suggesting a different neural processing. All in all, our exploratory study suggests that coordinating with robots affects action monitoring related processing. In the investigated paradigm, human participants treat errors during human-robot interaction differently from those made during interactions with other humans. These results can improve communication between humans and robot with the use of neural activity in real-time.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference69 articles.

1. Magnetoencephalography for brain electrophysiology and imaging;Baillet;Nat. Neurosci,2017

2. Robots and Their Applications

3. Interactions with robots: the truths we reveal about ourselves;Broadbent;Annu. Rev. Psychol,2017

4. The rise of social robots: a review of the recent literature;Campa;J. Evol. Technol,2016

5. Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring;Cavanagh;J. Neurosci,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3