Mutual Skill Learning and Adaptability to Others via Haptic Interaction

Author:

Saracbasi Ozge Ozlem,Harwin William,Kondo Toshiyuki,Hayashi Yoshikatsu

Abstract

When learning a new skill through an unknown environment, should we practice alone, or together with another beginner, or learn from the expert? It is normally helpful to have an expert guiding through unknown environmental dynamics. The guidance from the expert is fundamentally based on mutual interactions. From the perspective of the beginner, one needs to face dual unknown dynamics of the environment and motor coordination of the expert. In a cooperative visuo-haptic motor task, we asked novice participants to bring a virtual mass onto the specified target location under an unknown external force field. The task was completed by an individual or with an expert or another novice. In addition to evaluation of the motor performance, we evaluated the adaptability of the novice participants to a new partner while attempting to achieve a common goal together. The experiment was set in five phases; baseline for skill transfer and adaptability, learning and evaluation for adaptability and skill transfer respectively. The performance of the participants was characterized by using the time to target, effort index, and length of the trajectory. Experimental results suggested that (1) peer-to-peer interactions among paired beginners enhanced the motor learning most, (2) individuals practicing on their own (learning as a single) showed better motor learning than practicing under the expert's guidance, and (3) regarding the adaptability, peer-to-peer interactions induced higher adaptability to a new partner than the novice-to-expert interactions while attempting to achieve a common goal together. Thus, we conclude that the peer-to-peer interactions under a collaborative task can realize the best motor learning of the motor skills through the new environmental dynamics, and adaptability to others in order to achieve a goal together. We suggest that the peer-to-peer learning can induce both adaptability to others and learning of motor skills through the unknown environmental dynamics under mutual interactions. On the other hand, during the peer-to-peer interactions, the novice can learn how to coordinate motion with his/her partner (even though one is a new partner), and thus, is able to learn the motor skills through new environmental dynamics.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference36 articles.

1. On the analysis of movement smoothness;Balasubramanian;J. Neuroeng. Rehabil,2015

2. Haptic human-human interaction through a compliant connection does not improve motor learning in a force field;Beckers,2018

3. The role of the body in instrumental and vocal music pedagogy: a dynamical systems theory perspective on the music teacher's bodily engagement in teaching and learning;Bremmer;Front. Educ,2020

4. Multi-person and multisensory synchronization during group dancing;Chauvigné;Hum. Movement Sci,2019

5. Human-human physical interaction in the joint control of an underactuated virtual object;De Santis,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3