Ontology based autonomous robot task processing framework

Author:

Ge Yueguang,Zhang Shaolin,Cai Yinghao,Lu Tao,Wang Haitao,Hui Xiaolong,Wang Shuo

Abstract

IntroductionIn recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments.MethodsIn this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments.ResultsExperimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework.DiscussionIn future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.

Publisher

Frontiers Media SA

Reference36 articles.

1. “Know rob 2.0—a 2nd generation knowledge processing framework for cognition-enabled robotic agents,”;Beetz,2018

2. The CRAM cognitive architecture for robot manipulation in everyday activities;Beetz;arXiv:2304.14119 [cs],2023

3. “CRAM—a cognitive robot abstract machine for everyday manipulation in human environments,”;Beetz,2010

4. “Open-ease,”;Beetz,2015

5. “Deep learning techniques—R-CNN to mask R-CNN: a survey,”;Bharati;Computational Intelligence in Pattern Recognition, Vol. 999. Advances in Intelligent Systems and Computing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3