Research on a hybrid neural network task assignment algorithm for solving multi-constraint heterogeneous autonomous underwater robot swarms

Author:

Ru Jingyu,Hao Dongqiang,Zhang Xiangyue,Xu Hongli,Jia Zixi

Abstract

Studying the task assignment problem of multiple underwater robots has a broad effect on the field of underwater exploration and can be helpful in military, fishery, and energy. However, to the best of our knowledge, few studies have focused on multi-constrained underwater detection task assignment for heterogeneous autonomous underwater vehicle (AUV) clusters with autonomous decision-making capabilities, and the current popular heuristic methods have difficulty obtaining optimal cluster unit task assignment results. In this paper, a fast graph pointer network (FGPN) method, which is a hybrid of graph pointer network (GPN) and genetic algorithm, is proposed to solve the task assignment problem of detection/communication AUV clusters, and to improve the assignment efficiency on the basis of ensuring the accuracy of task assignment. A two-stage detection algorithm is used. First, the task nodes are clustered and pre-grouped according to the communication distance. Then, according to the clustering results, a neural network model based on graph pointer network is used to solve the local task assignment results. A large-scale cluster cooperative task assignment problem and a detection/communication cooperative work mode are proposed, which transform the cooperative cooperation problem of heterogeneous AUV clusters into a Multiple Traveling salesman problem (MTSP) for solving. We also conducted a large number of experiments to verify the effectiveness of the algorithm. The experimental results show that the solution efficiency of the method proposed in this paper is better than the traditional heuristic method on the scale of 300/500/750/1,000/1,500/2,000 task nodes, and the solution quality is similar to the result of the heuristic method. We hope that our ideas and methods for solving the large-scale cooperative task assignment problem can be used as a reference for large-scale task assignment problems and other related problems in other fields.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference26 articles.

1. A cooperative dynamic task assignment framework for COTSbot AUVs;Abbasi;IEEE Trans. Automat. Sci. Eng,2022

2. Neural combinatorial optimization with reinforcement learning;Bello;arXiv preprint arXiv:1611.09940,2016

3. “Real-time multi-UAV task assignment in dynamic and uncertain environments,”;Bertuccelli,2009

4. Cooperative decision-making under uncertainties for multi-target surveillance with multiples UAVs;Capitan;J. Intell. Robot. Syst,2016

5. “Learning heuristics for the TSP by policy gradient,”;Deudon,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task Allocation of Multiple AUVs and Simulation in Large Range Underwater Environment;2024 7th International Symposium on Autonomous Systems (ISAS);2024-05-07

2. Grid Operation and Inspection Resource Scheduling Based on an Adaptive Genetic Algorithm;International Journal of Engineering and Technology Innovation;2024-03-27

3. Design and Verification of Deep Submergence Rescue Vehicle Motion Control System;Sensors;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3