TP-GCL: graph contrastive learning from the tensor perspective

Author:

Li Mingyuan,Meng Lei,Ye Zhonglin,Yang Yanglin,Cao Shujuan,Xiao Yuzhi,Zhao Haixing

Abstract

Graph Neural Networks (GNNs) have demonstrated significant potential as powerful tools for handling graph data in various fields. However, traditional GNNs often encounter limitations in information capture and generalization when dealing with complex and high-order graph structures. Concurrently, the sparse labeling phenomenon in graph data poses challenges in practical applications. To address these issues, we propose a novel graph contrastive learning method, TP-GCL, based on a tensor perspective. The objective is to overcome the limitations of traditional GNNs in modeling complex structures and addressing the issue of sparse labels. Firstly, we transform ordinary graphs into hypergraphs through clique expansion and employ high-order adjacency tensors to represent hypergraphs, aiming to comprehensively capture their complex structural information. Secondly, we introduce a contrastive learning framework, using the original graph as the anchor, to further explore the differences and similarities between the anchor graph and the tensorized hypergraph. This process effectively extracts crucial structural features from graph data. Experimental results demonstrate that TP-GCL achieves significant performance improvements compared to baseline methods across multiple public datasets, particularly showcasing enhanced generalization capabilities and effectiveness in handling complex graph structures and sparse labeled data.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3