Bridging the gap: bioinspired robotics as catalyst for interdisciplinary education

Author:

Cayetano-Jiménez Israel Ulises,Bustamante-Bello Rogelio,Ramírez-Cadena Miguel

Abstract

IntroductionIn contemporary educational philosophy, constructivist and constructionist theories emphasize active knowledge construction among learners. These paradigms advocate for learners as active participants, engaging in knowledge creation through interaction and experience. Problem-Based Learning (PBL) exemplifies these principles by placing students at the center of hands-on challenges that foster critical thinking and collaborative problem-solving. This study explores the integration of these educational theories through an innovative pedagogical framework, focusing on the development of bioinspired robotics.MethodsIn a six-stage educational process at Tecnológico de Monterrey, 24 undergraduates were immersed in bioinspired robotics through workshops on animal biomechanics, soft robotics, and neuroscience. Organized into four teams, students designed robots for wildlife observation and search and rescue. The curriculum integrated theoretical lectures, hands-on training, and practical applications, emphasizing interdisciplinary collaboration and real-world problem-solving. This approach blended traditional education with innovative, project-based learning tailored to local and ecological challenges.ResultsThe culmination of this initiative was marked by the creation of functional robotic prototypes, underscoring the effectiveness of the interdisciplinary approach. Post-project evaluations revealed marked enhancements in students' proficiency in both sciences and engineering. Furthermore, there was a pronounced strengthening of students' conviction regarding the importance of integrating bioinspired principles into engineering education.DiscussionThe study advocates merging traditional knowledge with modern technological innovation and bioinspiration to enhance learning outcomes. This integrated approach boosts analytical reasoning and scientific skills while also fostering empathy and emotional literacy, preparing students as holistic thinkers and versatile innovators. Combining biology, robotics, and education offers significant benefits, providing insights for educators and policymakers to equip students for future challenges. There is a strong consensus on the value of incorporating biological principles into engineering education, signaling a shift toward innovative, interdisciplinary curricula that enhance technical and broader cognitive skills.

Publisher

Frontiers Media SA

Reference29 articles.

1. Piaget's constructivism, papert's constructionism: what's the difference;Ackermann;Fut. Learn. Group Public,2001

2. A critical review of constructivist theory and the emergence of constructionism;Alanazi;Am. Res. J. Human. Soc. Sci,2019

3. “Constructionism and robotics in education,”;Alimisis;Teacher Education on Robotic-Enhanced Constructivist Pedagogical Methods,2009

4. Constructivism in computer science education;Ben-Ari;ACM SIGCSE Bull,1998

5. Designing biomimetic robots: iterative development of an integrated technology design curriculum;Bernstein;Educ. Technol. Res. Dev,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3