Investigating students’ development of mechanistic reasoning in modeling complex aquatic ecosystems

Author:

Ryan Zach,Danish Joshua,Zhou Jinzhi,Stiso Christina,Murphy Danielle,Duncan Ravit,Chinn Clark,Hmelo-Silver Cindy E.

Abstract

IntroductionThis study reports on a classroom intervention where upper-elementary students and their teacher explored the biological phenomena of eutrophication using the Modeling and Evidence Mapping (MEME) software environment and associated learning activities. The MEME software and activities were designed to help students create and refine visual models of an ecosystem based on evidence about the eutrophication phenomena. The current study examines how students utilizing this tool were supported in developing their mechanistic reasoning when modeling complex systems. We ask the following research question: How do designed activities within a model-based software tool support the integrations of complex systems thinking and the practice of scientific modeling for elementary students?MethodsThis was a design-based research (DBR) observational study of one classroom. A new mechanistic reasoning coding scheme is used to show how students represented their ideas about mechanisms within their collaboratively developed models. Interaction analysis was then used to examine how students developed their models of mechanism in interaction.ResultsOur results revealed that students’ mechanistic reasoning clearly developed across the modeling unit they participated in. Qualitative coding of students’ models across time showed that students’ mechanisms developed from initially simplistic descriptions of cause and effect aspects of a system to intricate connections of how multiple entities within a system chain together in specific processes to effect the entire system. Our interaction analysis revealed that when creating mechanisms within scientific models students’ mechanistic reasoning was mediated by their interpretation/grasp of evidence, their collaborative negotiations on how to link evidence to justify their models, and students’ playful and creative modeling practices that emerged in interaction.DiscussionIn this study, we closely examined students’ mechanistic reasoning that emerge in their scientific modeling practices, we offer insights into how these two theoretical frameworks can be effectively integrated in the design of learning activities and software tools to better support young students’ scientific inquiry. Our analysis demonstrates a range of ways that students represent their ideas about mechanism when creating a scientific model, as well as how these unfold in interaction. The rich interactional context in this study revealed students’ mechanistic reasoning around modeling and complex systems that may have otherwise gone unnoticed, suggesting a need to further attend to interaction as a unit of analysis when researching the integration of multiple conceptual frameworks in science education.

Publisher

Frontiers Media SA

Subject

Education

Reference51 articles.

1. System thinking skills at the elementary school level;Assaraf;J. Res. Sci. Teach. The Official Journal of the National Association for Research in Science Teaching,,2010

2. Design Research in Education

3. Epistemic (meta) cognition: ways of thinking about knowledge and knowing;Barzilai,2016

4. Children’s mechanistic reasoning;Bolger;Cogn. Instr.,2012

5. Misconceived causal explanations for emergent processes;Chi;Cogn. Sci.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3