Author:
Henze Jannik,Schatz Carina,Malik Shalina,Bresges André
Abstract
Schools are searching for strategies to foster 4C competencies (Creativity, Cooperation, Communication and Critical Thinking) in children. Scientific Reasoning, Critical Thinking, and the ability to debunk myths are already important competencies that can be fostered with science education. How can we approach the majority of seventh grade students in a given school to create innovative approaches for the future, and leverage their skills in science, art and (digital) technology along the path? And are the teachers ready to guide them on this path? This article focuses on the questions: how did the teachers adopt both the STEAM approach, and the use of digital tools while being supervised by researchers and student teachers and how did this change their beliefs about technology in education. As a pathway, we aimed to connect Robotics, Coding, Artificial Intelligence (AI) with the Sustainable Development Goals (SDGs) of the United Nations. To end poverty, protect the environment, and ensure that all people enjoy peace and prosperity by 2030, the SDGs are incorporated into national policies and school curricula. With this, citizens, teachers, and governments alike struggle with strategies on how these goals can be reached by 2030, facing the growing challenges in an ever increasingly complex and insecure world. It is clear that technology will take a dominant role in this development. Based on the STEAM paradigm and the 5E approach of the Biological Sciences Curriculum Study (BSCS), we have developed a pedagogical concept that encompasses both the technological aspects, AI and the SDGs. We tested this concept as part of an on-the-job teacher training project with 60 education science student teachers and 8 teachers in their classrooms, together with their 116 7th grade students and found out that STEAM-based projects with a sixth phase in addition to the 5E approach can be carried out promisingly with the help of digital creativity tools. We found that the 5E model with an additional sixth phase is well suited for bringing STEAM into the classroom.
Funder
Bundesministerium für Bildung und Forschung
Reference26 articles.
1. Das operative prinzip.;Aebli;Math. Lehren,1985
2. The BSCS 5E instructional model and 21st century skills;Bybee;Paper Prepared for the Workshop on Exploring the Intersection of Science Education and the Development of 21st Century Skills.,2009
3. Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften
4. The 5E instructional model: a learning cycle approach for inquiry-based science teaching.;Duran;Sci. Educ. Rev.,2004
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献