Rubric development for AI-enabled scoring of three-dimensional constructed-response assessment aligned to NGSS learning progression

Author:

Kaldaras Leonora,Yoshida Nicholas R.,Haudek Kevin C.

Abstract

IntroductionThe Framework for K-12 Science Education (the Framework) and the Next- Generation Science Standards (NGSS) define three dimensions of science: disciplinary core ideas, scientific and engineering practices, and crosscutting concepts and emphasize the integration of the three dimensions (3D) to reflect deep science understanding. The Framework also emphasizes the importance of using learning progressions (LPs) as roadmaps to guide assessment development. These assessments capable of measuring the integration of NGSS dimensions should probe the ability to explain phenomena and solve problems. This calls for the development of constructed response (CR) or open-ended assessments despite being expensive to score. Artificial intelligence (AI) technology such as machine learning (ML)-based approaches have been utilized to score and provide feedback on open-ended NGSS assessments aligned to LPs. ML approaches can use classifications resulting from holistic and analytic coding schemes for scoring short CR assessments. Analytic rubrics have been shown to be easier to evaluate for the validity of ML-based scores with respect to LP levels. However, a possible drawback of using analytic rubrics for NGSS-aligned CR assessments is the potential for oversimplification of integrated ideas. Here we describe how to deconstruct a 3D holistic rubric for CR assessments probing the levels of an NGSS-aligned LP for high school physical sciences.MethodsWe deconstruct this rubric into seven analytic categories to preserve the 3D nature of the rubric and its result scores and provide subsequent combinations of categories to LP levels.ResultsThe resulting analytic rubric had excellent human- human inter-rater reliability across seven categories (Cohen’s kappa range 0.82–0.97). We found overall scores of responses using the combination of analytic rubric very closely agreed with scores assigned using a holistic rubric (99% agreement), suggesting the 3D natures of the rubric and scores were maintained. We found differing levels of agreement between ML models using analytic rubric scores and human-assigned scores. ML models for categories with a low number of positive cases displayed the lowest level of agreement.DiscussionWe discuss these differences in bin performance and discuss the implications and further applications for this rubric deconstruction approach.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3