Flexibility at the Price of Volatility: Concurrent Calibration in Multistage Tests in Practice Using a 2PL Model

Author:

Helbling Laura A.,Berger Stéphanie,Verschoor Angela

Abstract

Multistage test (MST) designs promise efficient student ability estimates, an indispensable asset for individual diagnostics in high-stakes educational assessments. In high-stakes testing, annually changing test forms are required because publicly known test items impair accurate student ability estimation, and items of bad model fit must be continually replaced to guarantee test quality. This requires a large and continually refreshed item pool as the basis for high-stakes MST. In practice, the calibration of newly developed items to feed annually changing tests is highly resource intensive. Piloting based on a representative sample of students is often not feasible, given that, for schools, participation in actual high-stakes assessments already requires considerable organizational effort. Hence, under practical constraints, the calibration of newly developed items may take place on the go in the form of a concurrent calibration in MST designs. Based on a simulation approach this paper focuses on the performance of Rasch vs. 2PL modeling in retrieving item parameters when items are for practical reasons non-optimally placed in multistage tests. Overall, the results suggest that the 2PL model performs worse in retrieving item parameters compared to the Rasch model when there is non-optimal item assembly in the MST; especially in retrieving parameters at the margins. The higher flexibility of 2PL modeling, where item discrimination is allowed to vary, seems to come at the cost of increased volatility in parameter estimation. Although the overall bias may be modest, single items can be affected by severe biases when using a 2PL model for item calibration in the context of non-optimal item placement.

Publisher

Frontiers Media SA

Subject

Education

Reference45 articles.

1. An Item-Driven Adaptive Design for Calibrating Pretest Items

2. Too Hard, Too Easy, or Just Right? the Relationship between Effort or Boredom and Ability-Difficulty Fit;Asseburg;Psychol. Test Assess. Model.,2013

3. Subject Matter Experts' Assessment of Item Statistics;Bejar,1983

4. On the Efficiency of IRT Models When Applied to Different Sampling Designs;Berger,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3