A data-driven multidimensional assessment model for English listening and speaking courses in higher education

Author:

Xue Shuwei,Xue Xin,Son Ye Jun,Jiang Yaxuan,Zhou Hang,Chen Shifa

Abstract

Based on multiple assessment approach, this study used factor analysis and neural network modeling methods to build a data-driven multidimensional assessment model for English listening and speaking courses in higher education. We found that: (1) Peer assessment, student self-assessment, previous academic records, and teacher assessment were the four effective assessors of the multi-dimensional assessment of English listening and speaking courses; (2) The multidimensional assessment model based on the four effective assessors can predict the final academic performance of students in English listening and speaking courses, with previous academic records contributing the most, followed by peer assessment, teacher assessment, and student self-assessment. Therefore, a multidimensional assessment model for English listening and speaking courses in higher education was proposed: the academic performance of students (on a percentage basis) should be composed of 29% previous academic records, 28% peer assessment, 26% teacher assessment, and 17% student self-assessment. This model can guide teachers to intervene with students who need help in a timely manner, based on various assessors, thereby effectively improving their academic performance.

Publisher

Frontiers Media SA

Subject

Education

Reference85 articles.

1. Boundary dilemmas in teacher–student relationships: struggling with “the line.”;Aultman;Teach. Teach. Educ.,2009

2. Working for washback: a review of the washback concept in language testing;Bailey;Lang. Test.,1996

3. Autoregressive longitudinal models;Biesanz,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3