Exploring educational simulation platform features for addressing complexity in Industry 4.0: a qualitative analysis of insights from logistics experts

Author:

Pacheco-Velazquez Ernesto,Rodes-Paragarino Virginia,Marquez-Uribe Alberto

Abstract

IntroductionThis study explores the transformative impact of Industry 4.0 on industrial operations, emphasizing the integration of advanced technologies like AI, IoT, and Big Data Analytics to enhance process optimization, automation, and connectivity. Despite its potential for efficiency, Industry 4.0 introduces significant complexities, challenging existing operational and decision-making frameworks. Addressing these challenges, the research investigates the role of simulation platforms in logistics, seeking to identify their critical attributes for effective complexity management. It highlights the need for innovative tools in system evaluation, performance measurement, and skill development, aiming to equip the workforce with essential Industry 4.0 competencies. Through qualitative insights from logistics experts, the study aims to offer practical recommendations for educators and industry professionals, contributing to the design and implementation of educational simulations that align with the intricate demands of Industry 4.0 logistics.MethodsThis study employs a qualitative content analysis approach to develop an Industry 4.0-adapted logistics simulator, leveraging the Asteraceae framework for digital game co-design and pedagogical reflection. Data were collected from six industry and academia experts through semi-structured interviews, designed around the framework’s key steps to explore simulator design, decision-making, impact, and skill development. Utilizing convenience sampling, the research engaged participants with experience in educational logistics platforms and simulators. Interviews were conducted online, with ethical considerations including informed consent. Transcription used OpenAI’s API for accuracy, followed by manual review. The analysis combined qualitative content with frequency analysis, employing Atlas.ti software to identify and code key simulation features as informed by expert insights. This methodology underscores a comprehensive approach to understanding and innovating logistics education for Industry 4.0, aiming to equip learners with necessary competencies through targeted simulation tools.ResultsThe study’s findings emphasize the critical role of simulation tools in Industry 4.0 logistics for risk mitigation, operational planning, and decision-making. Experts pointed out the significant benefits of simulations in providing safe spaces for experimentation, especially valuable for SMEs with limited access to advanced technologies. They advocated for simulators to incorporate current technological and e-commerce trends, suggesting a customizable business model based on diverse logistics requirements. Key insights included the necessity for adaptable simulation architectures to handle various operational variables, the importance of integrating multidisciplinary competencies like data analytics and strategic management, and the role of performance metrics in evaluating simulations and logistics operations. The analysis revealed essential features for an educational logistics simulator, highlighting the importance of operational knowledge, predictive analytics, and the need for a comprehensive tool that integrates technology, strategy, operations, and data analysis. This approach aims to equip users with the skills necessary for navigating the complexities of modern logistics, promoting a deep understanding of systems thinking and complex reasoning skills.DiscussionThe discussion centers on the essential requirement for a multidisciplinary approach in creating an educational logistics simulator for Industry 4.0, emphasizing the need for technological adaptability and operational efficiency. It highlights the importance of integrating advanced technologies and collaborative paradigms to enhance logistics operations and improve decision-making processes. The utility of simulation-based learning as a pedagogical tool is acknowledged, with an emphasis on its role in developing complex thinking and practical skills relevant to the digital transformation of the logistics sector. The discussion suggests that educational simulations are poised to play a pivotal role in preparing the workforce for Industry 4.0 challenges by bridging technological advancements and pedagogical strategies. However, it also points to the limitations of the current study, such as its sampling method and regional focus, and calls for future research to explore broader applications and the integration of comprehensive strategies to ensure the educational simulator’s effectiveness and relevance in a global context.

Publisher

Frontiers Media SA

Reference74 articles.

1. A survey of Internet of things (IoT) in education: opportunities and challenges;Al-Emran,2020

2. Industry 4.0 in pumping applications: achievements and trends;Bastos,2020

3. Sustainable development in the field of IoTfocused network engineer education based on simulation tools;Bolanowski,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3