Examination of children’s visuospatial thinking skills in domain-general learning and interpretation of scientific diagrams

Author:

Uchinokura Shingo,Koba Kengo

Abstract

Visuospatial thinking in science education is an important form of thinking that involves the purposeful use of the human eyes to develop an internal representation. This study examined the visuospatial thinking skills of primary school students with two aims (1) identifying students’ cognitive levels of these skills in domain-general learning, and (2) discovering how primary school students respond to visuospatial tasks that require interpretation of a diagrammatic representation. The study also investigated whether there are differences in how male and female students answer visuospatial thinking tasks. The participants included 93 fourth-grade students (8–9 years old), including 51 male and 42 female students, from a public primary school in Japan. The participants completed two types of paper-pencil tests. The first test required participants to complete the Wide-range Assessment of Vision-related Essential Skills (WAVES), a domain-general test that measures visual perception and eye-hand coordination skills. In the second test, students answered questions about the relationship between the movement of the sun and the behaviors of solar cells located in different places by interpreting a diagrammatic representation. Female students outperformed male students in one of the four WAVES index scores; otherwise, no other statistically significant differences were found. A small number of students had low visuospatial perception scores. When students were asked to explain their reasoning regarding how the solar cells worked based on their interpterion of the diagram, only a few answered correctly using perspective-taking and/or visualizing. Other students struggled to provide their reasoning, even if they had factual knowledge. Some students held an alternative conception of sunlight intensity and the sun’s path in the sky. They worked through the problem from their alternative conceptions without reference to visuospatial information or taking different perspectives from the diagram. No statistically significant differences were found in the relationship between achievement in the domain-general test and the number of correct answers in the domain-specific test. The study’s findings imply that students should be encouraged to practice visuospatial thinking to overcome previously held alternative conceptions. Furthermore, science education should emphasize the concept of space and teach conventional knowledge on different representation types. Further research on students’ learning progress in visuospatial thinking that includes alternative conceptions such as the students’ domain-specific knowledge is recommended.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3