Proof-of-concept of feasibility of human–machine peer learning for German noun vocabulary learning

Author:

Hromada Daniel D.,Kim Hyungjoong

Abstract

The present study provides the first empiric evidence that the creation of human–machine peer learning (HMPL) couples can lead to an increase in the level of mastery of different competences in both humans and machines alike. The feasibility of the HMPL approach is demonstrated by means of Curriculum 1 whereby the human learner H gradually acquires a vocabulary of foreign language, while the artificial learner fine-tunes its ability to understand H's speech. The present study evaluated the feasibility of the HMPL approach in a proof-of-concept experiment that is composed of a pre-learn assessment, a mutual learning phase, and post-learn assessment components. Pre-learn assessment allowed us to estimate prior knowledge of foreign language learners by asking them to name visual cues corresponding to one among 100 German nouns. In a subsequent mutual learning phase, learners are asked to repeat the audio recording containing the label of a simultaneously presented word with the visual cue. After the mutual learning phase is over, the subjacent speech-to-text (STT) neural network fine-tunes its parameters and adapts itself to peculiar properties of H's voice. Finally, the exercise is terminated by the post-learn assessment phase. In both assessment phases, the number of mismatches between the expected answer and the answer provided by human and recognized by machine provides the metrics of the main evaluation. In the case of all six learners who participated in the proof-of-concept experiment, we observed an increase in the amount of matches between expected and predicted labels, which was caused both by an increase in human learner's vocabulary as well as by an increase in the recognition accuracy of machine's speech-to-text model. Therefore, the present study considers it reasonable to postulate that curricula could be drafted and deployed for different domains of expertise, whereby humans learn from AIs at the same time as AIs learn from humans.

Publisher

Frontiers Media SA

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3