From understanding a simple DC motor to developing an electric vehicle AI controller rapid prototype using MATLAB-Simulink, real-time simulation and complex thinking

Author:

Ponce Pedro,Ramirez Ricardo,Ramirez Maria Soledad,Molina Arturo,MacCleery Brian,Ascanio Mack

Abstract

Electric drives have been used in several applications, such as electric vehicles, industry 4.0, and robotics. Thus, it is mandatory to promote updated electric drive courses that allow students to design novel solutions in these engineering areas. However, traditional undergraduate courses that only cover theoretical aspects and do not allow students to interact and produce practical results through experimentation are insufficient today. The students are not exposed to educational innovation, so they have difficulties proposing original solutions. On the other hand, conventional theoretical and laboratory courses in which students follow specific directions for achieving predefined goals do not allow students to create novel solutions and integrate the innovation process as a standard methodology. Moreover, beginning in 2020, the COVID-19 pandemic forced professors to implement digital tools and materials to continue education intensively. This proposed course presents an alternative to promote practical and theoretical knowledge in students. Besides, engineering students must create innovative solutions to increase the quality of life in rural and urban communities, which calls for novel experimental approaches. Electric drives are fundamental elements in electric systems and industrial processes proposed to save energy or control electric machines. In addition, industries urge specialized engineers who can tackle complex industrial problems. The proposed educational methodology can be implemented in manufacturing, agriculture, robotics, and aerospace. Hence, low-cost devices to validate the proposed solutions became used by students to achieve novel solutions using electric drives. This paper describes an undergraduate course called “Digital Control of Electric Machines” (electric drives) and its implementation of the Tec21 Educational Model of Tecnologico de Monterrey, V Model, MATLAB/ Simulink, low-cost hardware, and complex thinking. The content of the course begins with electric machine models and power electronics that allow students to move from the basic to the advanced industrial electric drive problems in a friendly manner. In addition, the V-model and Modelo Tec 21 are used as fundamental pillars of the leading innovative structure of the proposed course. The results showed that students mastered several soft and hard skills to accomplish complex design goals, including controlling an electric rapid prototype vehicle.

Publisher

Frontiers Media SA

Subject

Education

Reference33 articles.

1. A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities;Alkhatib,2019

2. Student usage of a learning management system at an open distance learning institute: a case study in electrical engineering;Arthur James;Int. J. Electr. Eng. Educ.,2015

3. Development of low-cost educational material for learning fundamentals of mechatronics;Asato,2015

4. The Design of Work Environments to stretch Managers' capacities for complex thinking;Bartunek;Hum. Resour. Plan.,1988

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3