Strengths and limitations of relative wealth indices derived from big data in Indonesia

Author:

Sartirano Daniele,Kalimeri Kyriaki,Cattuto Ciro,Delamónica Enrique,Garcia-Herranz Manuel,Mockler Anthony,Paolotti Daniela,Schifanella Rossano

Abstract

Accurate relative wealth estimates in Low and Middle-Income Countries (LMICS) are crucial to help policymakers address socio-demographic inequalities under the guidance of the Sustainable Development Goals set by the United Nations. Survey-based approaches have traditionally been employed to collect highly granular data about income, consumption, or household material goods to create index-based poverty estimates. However, these methods are only capture persons in households (i.e., in the household sample framework) and they do not include migrant populations or unhoused citizens. Novel approaches combining frontier data, computer vision, and machine learning have been proposed to complement these existing approaches. However, the strengths and limitations of these big-data-derived indices have yet to be sufficiently studied. In this paper, we focus on the case of Indonesia and examine one frontier-data derived Relative Wealth Index (RWI), created by the Facebook Data for Good initiative, that utilizes connectivity data from the Facebook Platform and satellite imagery data to produce a high-resolution estimate of relative wealth for 135 countries. We examine it concerning asset-based relative wealth indices estimated from existing high-quality national-level traditional survey instruments, the USAID-developed Demographic Health Survey (DHS), and the Indonesian National Socio-economic survey (SUSENAS). In this work, we aim to understand how the frontier-data derived index can be used to inform anti-poverty programs in Indonesia and the Asia Pacific region. First, we unveil key features that affect the comparison between the traditional and non-traditional sources, such as the publishing time and authority and the granularity of the spatial aggregation of the data. Second, to provide operational input, we hypothesize how a re-distribution of resources based on the RWI map would impact a current social program, the Social Protection Card (KPS) of Indonesia and assess impact. In this hypothetical scenario, we estimate the percentage of Indonesians eligible for the program, which would have been incorrectly excluded from a social protection payment had the RWI been used in place of the survey-based wealth index. The exclusion error in that case would be 32.82%. Within the context of the KPS program targeting, we noted significant differences between the RWI map's predictions and the SUSENAS ground truth index estimates.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3