AutoLoc: Autonomous Sensor Location Configuration via Cross Modal Sensing

Author:

Rohal Shubham,Zhang Yue,Ruiz Carlos,Pan Shijia

Abstract

Internet-of-Things (IoT) systems have become pervasive for smart homes. In recent years, many of these IoT sensing systems are developed to enable in-home long-term monitoring applications, such as personalized services in smart homes, elderly/patient monitoring, etc. However, these systems often require complicated and expensive installation processes, which are some of the main concerns affecting users' adoption of smart home systems. In this work, we focus on floor vibration-based occupant monitoring systems, which enables non-intrusive in-home continuous occupant monitoring, such as patient step tracking and gait analysis. However, to enable these applications, the system would require known locations of vibration sensors placed in the environment. Current practice relies on manually input of location, which makes the installation labor-intensive, time consuming, and expensive. On the other hand, without known location of vibration sensors, the output of the system does not have intuitive physical meaning and is incomprehensive to users, which limits the systems' usability. We present AutoLoc, a scheme to estimate the location of the vibration sensors in a two-dimensional space in the view of a nearby camera, which has spatial physical meaning. AutoLoc utilizes occupants' walking events captured by both vibration sensors and the co-located camera to estimate the vibration sensors' location in the camera view. First, AutoLoc detects and localizes the occupant's footsteps in the vision data. Then, it associates the time and location of the event to the floor vibration data. Next, the extracted vibration data of the given event from multiple vibration sensors are used to estimate the sensors' locations in the camera view coordinates. We conducted real-world experiments and achieved up to 0.07 meters localization accuracy.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference49 articles.

1. Amcrest IP4M-1028W/IP4M-1028B 4MP ProHD Vandal Dome WiFi Camera User Manual. (Huston, TX)2019

2. Analysis of indoor localization algorithm for wifi using received signal strength;Arthi,2020

3. Social barriers to the adoption of smart homes;Balta-Ozkan;Energy Policy,2013

4. BazarevskyV. GrishchenkoI. RaveendranK. ZhuT. ZhangF. GrundmannM. BlazePose: On-device Real-time Body Pose tracking. 2020

5. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems;Branch;SIAM J. Sci. Comput.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3