Abstract
Frequent universal testing in a finite population is an effective approach to preventing large infectious disease outbreaks. Yet when the target group has many constituents, this strategy can be cost prohibitive. One approach to alleviate the resource burden is to group multiple individual tests into one unit in order to determine if further tests at the individual level are necessary. This approach, referred to as a group testing or pooled testing, has received much attention in finding the minimum cost pooling strategy. Existing approaches, however, assume either independence or very simple dependence structures between individuals. This assumption ignores the fact that in the context of infectious diseases there is an underlying transmission network that connects individuals. We develop a constrained divisive hierarchical clustering algorithm that assigns individuals to pools based on the contact patterns between individuals. In a simulation study based on real networks, we show the benefits of using our proposed approach compared to random assignments even when the network is imperfectly measured and there is a high degree of missingness in the data.
Funder
Centers for Disease Control and Prevention
Subject
Artificial Intelligence,Information Systems,Computer Science (miscellaneous)