The myth of reproducibility: A review of event tracking evaluations on Twitter

Author:

Mamo Nicholas,Azzopardi Joel,Layfield Colin

Abstract

Event tracking literature based on Twitter does not have a state-of-the-art. What it does have is a plethora of manual evaluation methodologies and inventive automatic alternatives: incomparable and irreproducible studies incongruous with the idea of a state-of-the-art. Many researchers blame Twitter's data sharing policy for the lack of common datasets and a universal ground truth–for the lack of reproducibility–but many other issues stem from the conscious decisions of those same researchers. In this paper, we present the most comprehensive review yet on event tracking literature's evaluations on Twitter. We explore the challenges of manual experiments, the insufficiencies of automatic analyses and the misguided notions on reproducibility. Crucially, we discredit the widely-held belief that reusing tweet datasets could induce reproducibility. We reveal how tweet datasets self-sanitize over time; how spam and noise become unavailable at much higher rates than legitimate content, rendering downloaded datasets incomparable with the original. Nevertheless, we argue that Twitter's policy can be a hindrance without being an insurmountable barrier, and propose how the research community can make its evaluations more reproducible. A state-of-the-art remains attainable for event tracking research.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference81 articles.

1. A rule dynamics approach to event detection in Twitter with its application to sports and politics;Adedoyin-Olowe;Expert. Syst. Appl,2016

2. Sensing trending topics in Twitter;Aiello;IEEE Trans. Multimedia,2013

3. Hierarchical visualization of sport events using Twitter;Akhtar;J. Intell. Fuzzy Syst,2017

4. Topic detection and tracking pilot study final report,;Allan

5. Topic Detection and Tracking

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3