Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series

Author:

De Stefani Jacopo,Bontempi Gianluca

Abstract

State-of-the-art multivariate forecasting methods are restricted to low dimensional tasks, linear dependencies and short horizons. The technological advances (notably the Big data revolution) are instead shifting the focus to problems characterized by a large number of variables, non-linear dependencies and long forecasting horizons. In the last few years, the majority of the best performing techniques for multivariate forecasting have been based on deep-learning models. However, such models are characterized by high requirements in terms of data availability and computational resources and suffer from a lack of interpretability. To cope with the limitations of these methods, we propose an extension to the DFML framework, a hybrid forecasting technique inspired by the Dynamic Factor Model (DFM) approach, a successful forecasting methodology in econometrics. This extension improves the capabilities of the DFM approach, by implementing and assessing both linear and non-linear factor estimation techniques as well as model-driven and data-driven factor forecasting techniques. We assess several method integrations within the DFML, and we show that the proposed technique provides competitive results both in terms of forecasting accuracy and computational efficiency on multiple very large-scale (>102 variables and > 103 samples) real forecasting tasks.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference82 articles.

1. Deep Learning Based Time Series Forecasting;Agarwal,2020

2. Special Issue on Lazy Learning;Aha;Artif. Intelligence Rev.,1997

3. The Theta Model: a Decomposition Approach to Forecasting;Assimakopoulos;Int. J. Forecast.,2000

4. Forecasting with Temporal Hierarchies;Athanasopoulos;Eur. J. Oper. Res.,2017

5. A Review and Comparison of Strategies for Multi-step Ahead Time Series Forecasting Based on the NN5 Forecasting Competition;Ben Taieb;Expert Syst. Appl.,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3