SparkDWM: a scalable design of a Data Washing Machine using Apache Spark

Author:

Hagan Nicholas Kofi Akortia,Talburt John R.

Abstract

Data volume has been one of the fast-growing assets of most real-world applications. This increases the rate of human errors such as duplication of records, misspellings, and erroneous transpositions, among other data quality issues. Entity Resolution is an ETL process that aims to resolve data inconsistencies by ensuring entities are referring to the same real-world objects. One of the main challenges of most traditional Entity Resolution systems is ensuring their scalability to meet the rising data needs. This research aims to refactor a working proof-of-concept entity resolution system called the Data Washing Machine to be highly scalable using Apache Spark distributed data processing framework. We solve the single-threaded design problem of the legacy Data Washing Machine by using PySpark's Resilient Distributed Dataset and improve the Data Washing Machine design to use intrinsic metadata information from references. We prove that our systems achieve the same results as the legacy Data Washing Machine using 18 synthetically generated datasets. We also test the scalability of our system using a variety of real-world benchmark ER datasets from a few thousand to millions. Our experimental results show that our proposed system performs better than a MapReduce-based Data Washing Machine. We also compared our system with Famer and concluded that our system can find more clusters when given optimal starting parameters for clustering.

Publisher

Frontiers Media SA

Reference33 articles.

1. A scalable, hybrid entity resolution process for unstandardized entity references;Al Sarkhi;J. Comp. Sci. Colleg.,2020

2. An analysis of the effect of stop words on the performance of the matrix comparator for entity resolution;Al Sarkhi;J. Comp. Sci. Colleg.

3. Estimating the parameters for linking unstandardized references with the matrix comparator;Al Sarkhi;J. Inform. Technol. Manag.

4. “Optimal starting parameters for unsupervised data clustering and cleaning in the data washing machine,”;Anderson;Proceedings of the Future Technologies Conference (FTC) 2023, Volume 2,2023

5. “A spark-based workflow for probabilistic record linkage of healthcare data,”;Pita;Edbt/Icdt Workshops,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3