Do we behave differently on Twitter and Facebook: Multi-view social network user personality profiling for content recommendation

Author:

Yang Qi,Farseev Aleksandr,Nikolenko Sergey,Filchenkov Andrey

Abstract

Human personality traits are key drivers behind our decision making, influencing our lives on a daily basis. Inference of personality traits, such as the Myers-Briggs personality type, as well as an understanding of dependencies between personality traits and user behavior on various social media platforms, is of crucial importance to modern research and industry applications such as recommender systems. The emergence of diverse and cross-purpose social media avenues makes it possible to perform user personality profiling automatically and efficiently based on data represented across multiple data modalities. However, research efforts on personality profiling from multi-source multi-modal social media data are relatively sparse; the impact of different social network data on profiling performance and of personality traits on applications such as recommender systems is yet to be evaluated. Furthermore, large-scale datasets are also lacking in the research community. To fill these gaps, in this work we develop a novel multi-view fusion framework PERS that infers Myers-Briggs personality type indicators. We evaluate the results not just across data modalities but also across different social networks, and also evaluate the impact of inferred personality traits on recommender systems. Our experimental results demonstrate that PERS is able to learn from multi-view data for personality profiling by efficiently leveraging highly varied data from diverse social multimedia sources. Furthermore, we demonstrate that inferred personality traits can be beneficial to other industry applications. Among other results, we show that people tend to reveal multiple facets of their personality in different social media avenues. We also release a social multimedia dataset in order to facilitate further research on this direction.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference77 articles.

1. Machine learning approach to personality type prediction based on the myers-briggs type indicator®;Amirhosseini;Multimodal Technol. Interact,2020

2. Lexical predictors of personality type,;Argamon;Proceedings of the Joint Annual Meeting of the Interface and the Classification Society of North America,2005

3. 25 tweets to know you: a new model to predict personality with social media,;Arnoux,2017

4. Modeling relationships at multiple scales to improve accuracy of large recommender systems,;Bell,2007

5. Random forests;Breiman;Mach. Learn,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3