HPTMT Parallel Operators for High Performance Data Science and Data Engineering

Author:

Abeykoon Vibhatha,Kamburugamuve Supun,Widanage Chathura,Perera Niranda,Uyar Ahmet,Kanewala Thejaka Amila,von Laszewski Gregor,Fox Geoffrey

Abstract

Data-intensive applications are becoming commonplace in all science disciplines. They are comprised of a rich set of sub-domains such as data engineering, deep learning, and machine learning. These applications are built around efficient data abstractions and operators that suit the applications of different domains. Often lack of a clear definition of data structures and operators in the field has led to other implementations that do not work well together. The HPTMT architecture that we proposed recently, identifies a set of data structures, operators, and an execution model for creating rich data applications that links all aspects of data engineering and data science together efficiently. This paper elaborates and illustrates this architecture using an end-to-end application with deep learning and data engineering parts working together. Our analysis show that the proposed system architecture is better suited for high performance computing environments compared to the current big data processing systems. Furthermore our proposed system emphasizes the importance of efficient compact data structures such as Apache Arrow tabular data representation defined for high performance. Thus the system integration we proposed scales a sequential computation to a distributed computation retaining optimum performance along with highly usable application programming interface.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference40 articles.

1. Streaming Machine Learning Algorithms with Big Data Systems;Abeykoon,2019

2. Data Engineering for Hpc with python;Abeykoon,2020

3. The Fortress Language Specification;Allen;Sun Microsystems,2005

4. Apache Software Foundation (Accessed 2021/Aug)2021

5. Apache Software Foundation (Accessed 2021/Aug)2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Performance Dataframes from Parallel Processing Patterns;Parallel Processing and Applied Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3