A machine learning approach to quantify gender bias in collaboration practices of mathematicians

Author:

Steinfeldt Christian,Mihaljević Helena

Abstract

Collaboration practices have been shown to be crucial determinants of scientific careers. We examine the effect of gender on coauthorship-based collaboration in mathematics, a discipline in which women continue to be underrepresented, especially in higher academic positions. We focus on two key aspects of scientific collaboration—the number of different coauthors and the number of single authorships. A higher number of coauthors has a positive effect on, e.g., the number of citations and productivity, while single authorships, for example, serve as evidence of scientific maturity and help to send a clear signal of one's proficiency to the community. Using machine learning-based methods, we show that collaboration networks of female mathematicians are slightly larger than those of their male colleagues when potential confounders such as seniority or total number of publications are controlled, while they author significantly fewer papers on their own. This confirms previous descriptive explorations and provides more precise models for the role of gender in collaboration in mathematics.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverting Hierarchies: The Sociology of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2024

2. Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates;Education and Information Technologies;2023-08-12

3. Inverting Hierarchies: The Sociology of Mathematical Practice;Handbook of the History and Philosophy of Mathematical Practice;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3