Author:
Zhang Zhe,Huang Xiaobiao,Song Minghao
Abstract
Optimization algorithms/techniques such as genetic algorithm, particle swarm optimization, and Gaussian process have been widely used in the accelerator field to tackle complex design/online optimization problems. However, connecting the algorithm with the optimization problem can be difficult, as the algorithms and the problems may be implemented in different languages, or they may require specific resources. We introduce an optimization platform named Teeport that is developed to address the above issues. This real-time communication-based platform is designed to minimize the effort of integrating the algorithms and problems. Once integrated, the users are granted a rich feature set, such as monitoring, controlling, and benchmarking. Some real-life applications of the platform are also discussed.
Subject
Artificial Intelligence,Information Systems,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Beam Optimization;Intelligent Beam Control in Accelerators;2023