Real-time arrhythmia detection using convolutional neural networks

Author:

Vu Thong,Petty Tyler,Yakut Kemal,Usman Muhammad,Xue Wei,Haas Francis M.,Hirsh Robert A.,Zhao Xinghui

Abstract

Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify the arrhythmia conditions. To support real-time processing, we have carried out extensive experiments and evaluated the computational cost of each step of the classification workflow. Our results show that it is feasible to achieve real-time arrhythmic detection using convolutional neural networks. To further demonstrate the generalizability of this approach, we used the trained model with processed data collected by a customized wearable sensor from a lab setting, and the results shown that our approach is highly accurate and efficient. This research provides the potentials to enable in-home real-time heart monitoring based on 2D image data, which opens up opportunities for integrating both machine learning and traditional diagnostic approaches.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference43 articles.

1. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network;Acharya;Future Generat. Comp. Syst,2018

2. “Low cost, portable ECG monitoring and alarming system based on deep learning,”;Ahsanuzzaman,2020

3. Smart health care: an edge-side computing perspective;Akmandor;IEEE Cons. Electron. Magaz,2018

4. “A multistage deep learning algorithm for detecting arrhythmia,”;Altan;2018 1st international conference on computer applications & information security (ICCAIS)

5. “A multistage deep learning algorithm for detecting arrhythmia,”;Altan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3