Leveraging extreme scale analytics, AI and digital twins for maritime digitalization: the VesselAI architecture

Author:

Ilias Loukas,Tsapelas Giannis,Kapsalis Panagiotis,Michalakopoulos Vasilis,Kormpakis Giorgos,Mouzakitis Spiros,Askounis Dimitris

Abstract

The modern maritime industry is producing data at an unprecedented rate. The capturing and processing of such data is integral to create added value for maritime companies and other maritime stakeholders, but their true potential can only be unlocked by innovative technologies such as extreme-scale analytics, AI, and digital twins, given that existing systems and traditional approaches are unable to effectively collect, store, and process big data. Such innovative systems are not only projected to effectively deal with maritime big data but to also create various tools that can assist maritime companies, in an evolving and complex environment that requires maritime vessels to increase their overall safety and performance and reduce their consumption and emissions. An integral challenge for developing these next-generation maritime applications lies in effectively combining and incorporating the aforementioned innovative technologies in an integrated system. Under this context, the current paper presents the architecture of VesselAI, an EU-funded project that aims to develop, validate, and demonstrate a novel holistic framework based on a combination of the state-of-the-art HPC, Big Data and AI technologies, capable of performing extreme-scale and distributed analytics for fuelling the next-generation digital twins in maritime applications and beyond.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysing MLOps and its Applicability in the Maritime Domain through a Systematic Mapping Study;2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS);2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3