Author:
Ilias Loukas,Tsapelas Giannis,Kapsalis Panagiotis,Michalakopoulos Vasilis,Kormpakis Giorgos,Mouzakitis Spiros,Askounis Dimitris
Abstract
The modern maritime industry is producing data at an unprecedented rate. The capturing and processing of such data is integral to create added value for maritime companies and other maritime stakeholders, but their true potential can only be unlocked by innovative technologies such as extreme-scale analytics, AI, and digital twins, given that existing systems and traditional approaches are unable to effectively collect, store, and process big data. Such innovative systems are not only projected to effectively deal with maritime big data but to also create various tools that can assist maritime companies, in an evolving and complex environment that requires maritime vessels to increase their overall safety and performance and reduce their consumption and emissions. An integral challenge for developing these next-generation maritime applications lies in effectively combining and incorporating the aforementioned innovative technologies in an integrated system. Under this context, the current paper presents the architecture of VesselAI, an EU-funded project that aims to develop, validate, and demonstrate a novel holistic framework based on a combination of the state-of-the-art HPC, Big Data and AI technologies, capable of performing extreme-scale and distributed analytics for fuelling the next-generation digital twins in maritime applications and beyond.
Funder
Horizon 2020 Framework Programme
Subject
Artificial Intelligence,Information Systems,Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysing MLOps and its Applicability in the Maritime Domain through a Systematic Mapping Study;2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS);2024-05-12