Synthetic biomedical data generation in support of In Silico Clinical Trials

Author:

Simalatsar Alena

Abstract

Living in the era of Big Data, one may advocate that the additional synthetic generation of data is redundant. However, to be able to truly say whether it is valid or not, one needs to focus more on the meaning and quality of data than on the quantity. In some domains, such as biomedical and translational sciences, data privacy still holds a higher importance than data sharing. This by default limits access to valuable research data. Intensive discussion, agreements, and conventions among different medical research players, as well as effective techniques and regulations for data anonymization, already made a big step toward simplification of data sharing. However, the situation with the availability of data about rare diseases or outcomes of novel treatments still requires costly and risky clinical trials and, thus, would greatly benefit from smart data generation. Clinical trials and tests on animals initiate a cyclic procedure that may involve multiple redesigns and retesting, which typically takes two or three years for medical devices and up to eight years for novel medicines, and costs between 10 and 20 million euros. The US Food and Drug Administration (FDA) acknowledges that for many novel devices, practical limitations require alternative approaches, such as computer modeling and engineering tests, to conduct large, randomized studies. In this article, we give an overview of global initiatives advocating for computer simulations in support of the 3R principles (Replacement, Reduction, and Refinement) in humane experimentation. We also present several research works that have developed methodologies of smart and comprehensive generation of synthetic biomedical data, such as virtual cohorts of patients, in support of In Silico Clinical Trials (ISCT) and discuss their common ground.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference56 articles.

1. Computer aided clinical trials for implantable cardiac devices;Abbas;Annu. Int. Conf. IEEE Eng. Med. Biol. Soc,2018

2. “Design, implementation, and evaluation of a physiological closed-loop control device for medically-induced coma,”;An;2017 Conference Proceedings IEEE Engineering in Medicine and Biology Society EMBS,2017

3. Managing alarm systems for quality and safety in the hospital setting;Bach;BMJ Open Qual,2018

4. “Moving from specifications to contracts in component-based design,”;Bauer;Fundamental Approaches to Software Engineering,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3