A Systematic Review on Model Watermarking for Neural Networks

Author:

Boenisch Franziska

Abstract

Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered the intellectual property of the legitimate parties who have trained them, which makes their protection against stealing, illegitimate redistribution, and unauthorized application an urgent need. Digital watermarking presents a strong mechanism for marking model ownership and, thereby, offers protection against those threats. This work presents a taxonomy identifying and analyzing different classes of watermarking schemes for ML models. It introduces a unified threat model to allow structured reasoning on and comparison of the effectiveness of watermarking methods in different scenarios. Furthermore, it systematizes desired security requirements and attacks against ML model watermarking. Based on that framework, representative literature from the field is surveyed to illustrate the taxonomy. Finally, shortcomings and general limitations of existing approaches are discussed, and an outlook on future research directions is given.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference61 articles.

1. Turning Your Weakness into a Strength: Watermarking Deep Neural Networks by Backdooring;Adi,2018

2. Neural Network Laundering: Removing Black-Box Backdoor Watermarks from Deep Neural Networks;Aiken;Comput. Security,2021

3. Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers;Ateniese,2013

4. Pruning Algorithms of Neural Networks—A Comparative Study;Augasta;Open Comp. Sci.,2013

5. Csi Neural Network: Using Side-Channels to Recover Your Artificial Neural Network Information;Batina,2018

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3