The impact of comorbidities and economic inequality on COVID-19 mortality in Mexico: a machine learning approach

Author:

Méndez-Astudillo Jorge

Abstract

IntroductionStudies from different parts of the world have shown that some comorbidities are associated with fatal cases of COVID-19. However, the prevalence rates of comorbidities are different around the world, therefore, their contribution to COVID-19 mortality is different. Socioeconomic factors may influence the prevalence of comorbidities; therefore, they may also influence COVID-19 mortality.MethodsThis study conducted feature analysis using two supervised machine learning classification algorithms, Random Forest and XGBoost, to examine the comorbidities and level of economic inequalities associated with fatal cases of COVID-19 in Mexico. The dataset used was collected by the National Epidemiology Center from February 2020 to November 2022, and includes more than 20 million observations and 40 variables describing the characteristics of the individuals who underwent COVID-19 testing or treatment. In addition, socioeconomic inequalities were measured using the normalized marginalization index calculated by the National Population Council and the deprivation index calculated by NASA.ResultsThe analysis shows that diabetes and hypertension were the main comorbidities defining the mortality of COVID-19, furthermore, socioeconomic inequalities were also important characteristics defining the mortality. Similar features were found with Random Forest and XGBoost.DiscussionIt is imperative to implement programs aimed at reducing inequalities as well as preventable comorbidities to make the population more resilient to future pandemics. The results apply to regions or countries with similar levels of inequality or comorbidity prevalence.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3