Preparing Distributed Computing Operations for the HL-LHC Era With Operational Intelligence

Author:

Di Girolamo Alessandro,Legger Federica,Paparrigopoulos Panos,Schovancová Jaroslava,Beermann Thomas,Boehler Michael,Bonacorsi Daniele,Clissa Luca,Decker de Sousa Leticia,Diotalevi Tommaso,Giommi Luca,Grigorieva Maria,Giordano Domenico,Hohn David,Javůrek Tomáš,Jezequel Stephane,Kuznetsov Valentin,Lassnig Mario,Mageirakos Vasilis,Olocco Micol,Padolski Siarhei,Paltenghi Matteo,Rinaldi Lorenzo,Sharma Mayank,Tisbeni Simone Rossi,Tuckus Nikodemas

Abstract

As a joint effort from various communities involved in the Worldwide LHC Computing Grid, the Operational Intelligence project aims at increasing the level of automation in computing operations and reducing human interventions. The distributed computing systems currently deployed by the LHC experiments have proven to be mature and capable of meeting the experimental goals, by allowing timely delivery of scientific results. However, a substantial number of interventions from software developers, shifters, and operational teams is needed to efficiently manage such heterogenous infrastructures. Under the scope of the Operational Intelligence project, experts from several areas have gathered to propose and work on “smart” solutions. Machine learning, data mining, log analysis, and anomaly detection are only some of the tools we have evaluated for our use cases. In this community study contribution, we report on the development of a suite of operational intelligence services to cover various use cases: workload management, data management, and site operations.

Funder

CERN

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing WLCG File Transfer Errors Through Machine Learning;Computing and Software for Big Science;2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3