When we talk about Big Data, What do we really mean? Toward a more precise definition of Big Data

Author:

Han Xiaoyao,Gstrein Oskar Josef,Andrikopoulos Vasilios

Abstract

Despite the lack of consensus on an official definition of Big Data, research and studies have continued to progress based on this “no consensus” stance over the years. However, the lack of a clear definition and scope for Big Data results in scientific research and communication lacking a common ground. Even with the popular “V” characteristics, Big Data remains elusive. The term is broad and is used differently in research, often referring to entirely different concepts, which is rarely stated explicitly in papers. While many studies and reviews attempt to draw a comprehensive understanding of Big Data, there has been little systematic research on the position and practical implications of the term Big Data in research environments. To address this gap, this paper presents a Systematic Literature Review (SLR) on secondary studies to provide a comprehensive overview of how Big Data is used and understood across different scientific domains. Our objective was to monitor the application of the Big Data concept in science, identify which technologies are prevalent in which fields, and investigate the discrepancies between the theoretical understanding and practical usage of the term. Our study found that various Big Data technologies are being used in different scientific fields, including machine learning algorithms, distributed computing frameworks, and other tools. These manifestations of Big Data can be classified into four major categories: abstract concepts, large datasets, machine learning techniques, and the Big Data ecosystem. This study revealed that despite the general agreement on the “V” characteristics, researchers in different scientific fields have varied implicit understandings of Big Data. These implicit understandings significantly influence the content and discussions of studies involving Big Data, although they are often not explicitly stated. We call for a clearer articulation of the meaning of Big Data in research to facilitate smoother scientific communication.

Publisher

Frontiers Media SA

Reference30 articles.

1. 20111 AgrawalD. BernsteinP. A. BertinoE. DavidsonS. B. DayalU. FranklinM. J. Challenges and opportunities with big data.2011

2. Research on Big Data – a systematic mapping study;Akoka;Comput. Stand. Interf,2017

3. The challenge of Big Data and data science;Brady;Ann. Rev. Polit. Sci,2019

4. Big Data: Concepts, Challenges and Applications

5. Data-intensive applications, challenges, techniques and technologies: a survey on Big Data;Chen;Inf. Sci,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3