Locomotion Control With Frequency and Motor Pattern Adaptations

Author:

Thor Mathias,Strohmer Beck,Manoonpong Poramate

Abstract

Existing adaptive locomotion control mechanisms for legged robots are usually aimed at one specific type of adaptation and rarely combined with others. Adaptive mechanisms thus stay at a conceptual level without their coupling effect with other mechanisms being investigated. However, we hypothesize that the combination of adaptation mechanisms can be exploited for enhanced and more efficient locomotion control as in biological systems. Therefore, in this work, we present a central pattern generator (CPG) based locomotion controller integrating both a frequency and motor pattern adaptation mechanisms. We use the state-of-the-art Dual Integral Learner for frequency adaptation, which can automatically and quickly adapt the CPG frequency, enabling the entire motor pattern or output signal of the CPG to be followed at a proper high frequency with low tracking error. Consequently, the legged robot can move with high energy efficiency and perform the generated locomotion with high precision. The versatile state-of-the-art CPG-RBF network is used as a motor pattern adaptation mechanism. Using this network, the motor patterns or joint trajectories can be adapted to fit the robot's morphology and perform sensorimotor integration enabling online motor pattern adaptation based on sensory feedback. The results show that the two adaptation mechanisms can be combined for adaptive locomotion control of a hexapod robot in a complex environment. Using the CPG-RBF network for motor pattern adaptation, the hexapod learned basic straight forward walking, steering, and step climbing. In general, the frequency and motor pattern mechanisms complement each other well and their combination can be seen as an essential step toward further studies on adaptive locomotion control.

Funder

Human Frontier Science Program

Vidyasirimedhi Institute of Science and Technology

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Sensory Systems,Neuroscience (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3